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SUMMARY 

"he present report is a study of the stability of laminar boundary- 
layer profiles on slightly curved walls relative to small disturbances, 
in the shape of vortices, whose axes are parallel to the principal direc- 
tion of flow. 
-undisturbed flow at a prescribed wail, the amplification or decay is com- 
puted for each Reynolds number and each vortex thickness. 
disturbances (amplification null) r _  critical Reynolds number is detemined 

fied disturbances on concave walls only. 

The result in an eigenvalue problem by which, for a given 

For neutral 

. for each vortex distribution. The n-merical calculation produces ampli- 
The variation of the dimension- 

7 

'(i less - '09 J i  with respect to a9 is only slightly dependent on the 
V R  

shape of the boundary-layer profile. 
tion about stability limit, range of wave length of vortices that can be 
amplified, and about the most dangerous vortices with regard to the tran- 
sition from laminar to turbulent flow. 
amplified vortices the flow still is entirely regular; transition to tur- 
bulent flow may not be expected until the Reynolds numbers are higher. 

The numerical results yield informa- 

At the very first appearance of 

1. INTRODUCTION 

Until now the stability calculations of laminar two-dimensional fluid 
flows on straight walls had usually been based upon disturbances in the 
shape of plane wave motions which travel in the direction of the flow. 
After some initial failures (see Noether's comprehensive report, 1921 
(ref. 2 ) ) ,  the researches by Prandtl, Tietjens, Tollmien, m d  Schlichting 

*%her eine dr eidimens ionale Ins tab ili tst laminarer Grenzsc hie ht en 
an konkaven !&nden." Ges. d. !diss. Gzttingen, Nachr. :t. d. Math., Bd. 2, 
Nr. 1, 1940. 
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have, since 1921, produced results which compared well with observations 
and to a certain extent yielded information about the important question 
of the origin of turbulence from small disturbances. Schlichting, 1934 
(ref. 7), gave a report on the results of these investigations. A brief 
glance at the method is indicated. 

8 

In these calculations, a velocity distribution U(y) that depends 
at right angles to the plane of the wall is only on the coordinate 

assumed as the basic flow. The omission of variations of the laminar 
basic flow in the x-direction (=  principal flow direction parallel to 
wall) was dictated by mathematical reasons; and the results of the calcu- 
lations enabled valuable deductions to be made as long as the variations 
in x-direction were not excessive. To the basic flow U(y) were added 
disturbances of assumedly sufficient smallness to permit linearization of 
the hydrodynamic equations with regard to the components of the disturb- 
ance. 
the stream function of the disturbance in the form 

y 

"his way the problem could be narrowed down to an expression for 

. 
A particular disturbance can then be built up by the Fourier method as a 
disturbance of a general kind by a linear combination of such partial 
oscillations. While a is assumed as real, the prefix of the imaginary 
part of p determines whether there is amplification or damping with 
increasing time t. 

b 

The more general expression of three-dimensional disturbances in the 
form of traveling waves, which are parallel to the flat wall but oblique 
to the base flow direction, hence, for which the velocity compo- 
nents ui(i = 1,2,3) are given by 

( z  coordinate parallel to wall and perpendicular to principal flow direc- 
tion), was analyzed by H. B. Squire (ref. 6). 
aforementioned special case (1.1) to be treated independently, he was able 
to show that, in the case of the disturbances (1.2) with cy # 0, 
amplification always occurrs at higher Reynolds numbers than in the case 
of the disturbances (1.1) with Therefore, the investi- 
gation can be limited to two-dimensional disturbances of the form (1.1). 

The stability investigation of laminar boundary layers relative to 
these disturbances was also applied to curved walls (x is then the arc 
length of the wall). 
allowance for friction were applied by Schlichting (ref. 5) to the case 

By comparison with the 

a1 # 0, 
a? = u12 + 92. 

I 

Tollmien's claculations for the flat plate with . 
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of flow within a rotating circular cylinder. The stabilizing effect of 
the wall curvature is such that the critical Reynolds number, formed with 
the displaceme t thickness 6* of the boundary layer, increases witoh 
increasing 6 , j l R  (R = radius of circular cylinder). This stabilizing 
effect corresponds likewise with the concepts associated with the action 
of the centrifugal force (compare Prandt.1, ref. 4). 

b 

Boundary-layer flows on slightly curved stationary walls were inves- 
tigated by the writer (ref. 10) for stability against two-dimensional dis- 
turbances of the form (1.1). Tollmien's result for flat walls, with fric- 
tion neglected and, hence, with the evaluation of the critical Reynolds 
number disregarded, was the well-known stability criterion which states 
that boundary-layer profiles with ififlection point are ustable. Such 
profiles are characterized by a pressure rise from the outside of the 
boundary layer in the direction of flow. For curved walls, this criterion 
is modified to the extent that, instead of the stipulated change of the 

R 
radius R of wall positive on walls convex to flow, negative on walls 
concave to flow). This Tollmien instability occurs, therefore, on concave 
walls only after the minimum of the pressure impressed on the boundary 
layer from without, and on convex walls already before the pressure mini- 
mum. However, the effect of the wall curvature is extremely small. 

sign of U"(Y), a change of sign at Ut' + - 1 Ut is necessary (curvature 

. 
n 

It is surprising that convex stationary walls in this sense act 
amplifying, but concave walls stabilizing, hence, that the effect of the 
centrifugal force does not appear. A confirmation of the criterion fol- 
lows from the fact that the same can be applied also to Schlichting's 
Case of a rotating cylinder, as explained in detail in the aforementioned 
report. There the criterion, in accord with Schlichting's results, yields 
a stabilizing effect of the rotating concave wall. In unpublished calcu- 
lations, Schlichting investigated the case of the stationary curved wall 
in analogy to his own and Tollmien's calculations for the flat wall, with 
allowance for friction, for the purpose of observing the wall-curvature 
effect on the critical Reynolds number. 
Mr. Schlichting told me that these calculations also proved the stabi- 
lizing effect of concave walls and amplifying effect of convex walls. 

In a personal conversation, 

In the present report, it will be shown that boundary-layer profiles 
on concave walls can become unstable relative to certain three-dimensional 
disturbances. It involves an instability that does not occur on flat or  
convex walls. The friction is duly allowed for in the calculations and 
even the impediment due to the now more complicated type of disturbance 
can be overcome in a relatively simple manner. As to the type of these 
disturbances, they are similar to those investigated by Taylor in 1923 
(ref. 3 )  in the flow between rotating cylinders and which led to the well- 
known instability (excellently confirmed by experiments Taylor made at the 
same time) in the form of appearance of sharply defined vortices distrib- 
uted boxlike in rectangular zones (compare fig. 1) taken from Taylor's 
report. 

.I 
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The expression of corresponding equidistant vortices in the boundary 
layer at a curved wall, in which the axes of the vortices are parallel to 
the principal flow direction (see representation in fig. 2 ) ,  leads through 
the Navier-Stokes equations and the equation of continuity to an eigen- 
value problem: The amplification of the vortex disturbance for a pre- 
scribed basic flow on a given wall must be computed for each vortex dis- 
turbance and each Reynolds number of the basic flow; in particular for the 
neutral disturbances (zero amplification) a "critical Reynolds number" for 
each vortex distance must be determined. It is interesting to know how 
these results tie in with the type of basic flow and the wall curvature, 
and also the size of the vortices which are amplified first at increasing 
Reynolds number, as well as the question of the most dangerous vortices 
from the point of view of transition from laminar to turbulent flow. 

8 

A t  the present. state of the experimental investigations, only the 
order of magnitude of the effect is of interest. All the calculations 
are centered on these claims, hence do not aim at an exhaustive mathemat- 
ical treatment of the present disturbance problem but rather to a reply 
to the questions of interest in practice with an expenditure justifiable 
to the claim. . 

2. DEVELOPMENT OF THE D I F F E R E N T I A L  EQUATIONS OF DISTURBANCE 

Consider the case of two-dimensional flow of a viscous fluid on a 
slightly curved stationary wall. The finite curvature radius R of the 
wall is, for the sake of simplicity, assumed as constant, and R is 
assumed great compared to the boundary-layer thickness 
formed under the influence of the viscosity; R is chosen positive for 
walls concave to the flow - since the instability to be explored occurs 
only on concave walls - and negative for walls convex to the flow. 

6 on the wall 

The basic flow is along the x-direction (x = arc length along the 
wall), y(2 0) is the vertical wall distance, and z is the coordinate 
at right angle to both in the direction of the cylinder axis out of whose 
surface portion the wall is formed. 



In these coordinates, the first Navier-Stokes equation, for example, 
reads in full rigor and generality 

n 

where 
and z-directions, p the pressure, P the density, and v the kinematic 
viscosity of the flowing medim. 
disregarded as customary, and R is assmed great with respect to 6 by 

1 l The Navier-Stokes equa- binomial development of - 
tions and the continuity equation, up to the terms of the order $, read 
then 

u, v, w are the velocity components of the total flow in x-, y-, 

PA1 f l c ? w  variatims ir, x-direction are 

ana n9 R - Y  

A 

J 

. 
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* 
TIi- undist,urbed flow u = uo(y,t), v = 0, w = 0, p = po, which 

itself is to be a solution of the hydrodynamic equations, for which, 
therefore, 

au, d2U0 1 duo 
at hY2 R 3Y 
- = v - - - -  

are applicable, is to change very little during the interval in which the 
duo disturbances are to be observed. Therefore, - and, hence, its equiva- 
at 

lent viscosity term is deliberately disregarded hereafter 2nd ~0 is 
Put = UO(Y) 

This basic flow uo(y) is a laniinar boundary-layer flow formed by 
Use -is made occa- some previous history based on the viscosity effect. 

sionally of the conventional idealization of such a bourdary layer, which 
consists in assuming instead of the asymptotic transition in the outer 
flow 
value uo(6) = Uo at a certain point y = 6 = "boundary-layer thickness," 
while putthg uo = Uo for y 2 6. The minor effect of the assumedly 
slight w a l l  curvature on the outside flow is iaored, since it; plays no 
part within the framework 04 our theory of a first approximation. 

On the assumption that R >> 6, the term 3 relative to $ and 
can be disregarded in the equa- 

b 

~0 = !Jo = const., an increase of uo(0) = 0 at the w a l l  up to the 
0 

R 
the term - - l - with respect to - a2u 

R a y  ay2 

two other velocity components. 
becomes evident in the term - of the second equation (2.1). Moreover, R 
no systematic difficulties are encountered if 1;he cited small terms are 
carried along in the subsequent calculation. But, since they only hainper 
the -;ask and contribute nothing to the effect involved, they are 
discounted. 

The essential effect of the w a l l  curvature 
U2 
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So, in conformity with the arrangements at the beginning, the fol- 
lowing disturbance equation is used: 

u = uo(y) + ul(y) cos azePt 

v = v (y) cos azep t 

w = w (y) sin azep t 

p = Po(Y) + P,(Y) cos a d t  

1 

1 

a is to be real and the calculation for p itself is to result in real 
values; a = a, where h is the wave length of the disturbance. The 

quantity p governs the amplification or damping of the flow, depending 
upon whether it is greater or smaller than zero. The equation (2.2) cor- 
responds to a vortex distribution at the curved wall, the axes of which 
coincide with the direction of the principal flow. Figure 3 represents 
t'ne streamline pattern in a section normal to the principal flow dirtctiori. 

h 

Introduction of equation (2.2) in the equations (2.1) following the 
omissions arising from R >> 6 results in the linearized equations with 
respect to the disturbance 

They apply as long as the disturbance velocities are small with 
respect to the basic-flow velocity. 

To treat this system of ordinary differential equations for the 
Unknown functions ul, vl, wl, and pl, we insert w1 from (2.3.4) in 
(2.3.3). The result is p as a differential expression of the third 1 
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order in  vl. On subs t i t u t ing  t h i s  expression f o r  p1 i n  (2.3.2), u1 
appears a s  d i f f e r e n t i a l  expression of t he  fou r th  order i n  vl. Combined w 

with  (2.3 .l), the  following system of coupled d i f f e r e n t i a l  equations i s  
obtained f o r  u1 and vl: 

(2.4.1) 

2 

R 

4 d2vl 2u uo 
v - - ( p  + 2va2) - + u*(p + vuqv, = - - 

dY 4 dY2 
u1 (2.4.2) v1 

When u1 and v1 a r e  known, w1 and p1 a r e  computed from (2.3.4) 
and (2.3.3). 

It i s  not recommended t o  s e t  up a d i f f e r e n t i a l  equation of thc. s ix th  
order for u1 or fo r  v1 alone by fu r the r  e l iminat ion.  The subsequent 
calculat ions a r e  r a the r  based d i r e c t  on the  systems (2.4.1) and (2.4.2) and 
merely produce a s implif ied mode of wri t ing.  With 6 denoting a su i tab ly  
chosen measure f o r  t h e  boundary-layer thickness,  t h e  following dimension- 
less  fac tors  a r e  u t i l i z e d :  4 

1 
u = -  uO 

uO 

For neu t r a l  disturbances,  t h a t  i s ,  t h a t  s t a t e  of t r a n s i t i o n  i n  which 
t h e  disturbances a r e  ne i ther  amplified nor damped, p = 0, hence T = 0 .  . 
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It further is appropriate to use the quantities 

?' v' = v1 

instead of u1 and vl. The prime is also omitted in the following with- 
out running a chance of causing a mixup with u and v defined by (2.2). 

The differential equations (2.4.1) and (2.4.2) can be written briefly 
as differen+!sl equations for u and v, as follows: 

d U L u = - v  
d71 

L Lv = - &LUu 
J 0 

by utilizing the differential operators 

In conformity 
can be prescribed. 

with the order of this system, six boundary conditions 
It is especially stipulated that q ( 0 )  = q ( 0 )  = 

wl(0) = 0, i.e., that the fluid hugs the wall. 
(2.3.4), it is required that 
three conditions, the decay of the disturbance at 
or when the boundary layer at 
change to the conctant outside flow. 
disturbance components with the respective values decaying with 
outside the boundary layer is assured. The symbol "00" signifies 
"sufficiently great. ' I  

So with consideration to 
u(0) = v(0 )  = v'(0) = 0.  With the other 

y = 6, that is, 7 = 1 is permitted to 
Thus the smooth junction of three 

7 - m  

7 -00 is attainable, 

The homogeneous system of differential equations (2.7) together with 
six homogeneous boundary conditions produce an eignevalue problem for the 



proposed values of ~ ( q )  and ~ / 6 :  The magnitude of amplification B 
for every given wave length A and every given Reynolds number Re = - 
must be determined (i.e., the relationship existing between the parameters 
T, u, and p, required for solving the homogeneous boundary value prob- 
lem, must be calculated). 
T = u )  especially, call for the determination of a "critical" Reynolds 
number of every wave length of disturbance A, at which the particular 
disturbance is exactly maintained without amplifying or decaying. 

V W 

The neutral disturbances ( B  = 0, that is, 

In the subsequent analysis of the eigenvalue, the practical aspect 
is the primary object-namely, at what Reynolds number does amplification 
appear (stability limit)? What is the range of the wave lengths of dis- 
turbances that can be amplified at all? At what wave lengths does ampli- 
fication appear first when Re increases? What disturbances are ampli- 
fied most and are therefore most dangerous from the point of view of 
turbulence? What effect has the amount of the wall curvature on these 
data? Are there appreciable differences when different boundary-layer 
profiles U ( q )  are used as basis? The question of calculating the eigen- 
function is disregarded in the present report, although it may be stated 
that the method developed enables am approximate representation of it. 

It is readily apparent from (2.7) that the Reynolds number and the 
w a l l  curvature appear only in the form of the dimensionless 

(namely, in parameter F ) .  

- 
V 

3 .  CONVERSION OF THE DIFFEXENTIAL EQUATIONS OF DISTIIRBANCE 

TO AN EQUIVAI;ENT SYSTEM OF INTEGRAL EQUATIONS 

Green's function G q; qo 

(1) G(q; v0) in 0 5 q 5 w at q # qo is twice differentiable with 

is identified by the following postulates: 0 
respect to q .  

(3) G(7; qo) is continuous at the point q = q but has in its 0' 
first derivative the discontinuity defined by 

(4) G@; 721 = o and G also disappears at q--+m. 
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Green's funct ion H 7; v 0 )  i s  t o  have t h e  following qua l i ty :  ( 
6 

(1) H(7; q o )  i s  four  times continuously d i f f e r e n t i a b l e  with 

respect  t o  7 i n  o S 7 s rn a t  7 # v0.  

( 3 )  A t  t h e  point  7 = vo, H(7; 70) i s  continuous including first 

and second der ivat ives ,  b u t t h e  t h i r d  de r iva t ive  has t h e  
d iscont inui ty  

4 
By these  requirements, G and H a t  0 5 7 g w are c l e a r l y  

i d e n t i f i e d .  The ca lcu la t ion  gives 



1 I c 

The d i f f e r e n t i a l  equation system (2.7) i s  equivalent t o  t h e  i n t e g r a l  
equation system 

4 .  METHOD OF DEFINING THE EIGENVALUES 

b (3.2) 

To begin with, t he  in tegra t ion  i n t e r v a l  i s  divided i n t o  p a r t i a l  

in te rva ls  of t he  same length d, and qo(k)  and q ( k )  s ign i fy  poin ts  

of the k-th p a r t i a l  i n t e rva l :  (k  - 1) d <= qo(k )  <= kd (k  = 1, 2, 3 . .  .), 

(k). The subscr ip t  k added and where, for s impl ic i ty  sake, = q O  
t o  a function symbol ind ica tes  t h a t  t h e  p a r t i c u l a r  funct ion i s  t o  be 
formed a t  a point  of t he  k-th p a r t i a l  i n t e rva l ,  say about Uk = u(qo(k)); 

furthermore, Gik = G(q(i) ;  qo(k)), Hik = H G ( i ) ;  To (k)).. reason of 

t h e  Symmetry Of t h e  Green funct ions,  Gik = Gki a d  Hik = Hki. 



NACP, TM 1375 13 

Patterned after the Fredholm theory the integral in (3.2) is 
4 replaced by summation 

m 

m 

(4.la) 

(i = 1,2,3, ... ) 
(4 .lb) 

uk' disappears for sufficiently great arguments qo(k). Letting, as 
approximation to the aspptotic transition, the boundary layer change to 
U = Constant at q = 1 (that is, y = 6), it can be stated more accu- 
rately that uk' = o at vo(k)  2 1. %us at finite d a finite sum is 
involved in the summat.inn (4.la). If nd = 1, the s~mmation along k 
must be extended from 1 to n. As a result, only the Vk with k I n  
appear on the right-hand side of the equation (4.la). 

0 

w Correspondingly, considering only the equations with the vi at 
which in (4.lb), the infinite sum on the right-hand side can be 
approximately replaced by a finite sum of k - 1 up to a sufficiently 
great k = N, because the values Hik decrease rapidly with increasing 

k owing to the upwardly restricted i $  n (the Uk themselves decay 
with increasing k). The homogeneous system of the n + N equations is 
therefore investigated 

i 5 n 

1 

J 

for the N unknown ui(i = 1,2, ... N) and the n unknown 
vi(i = 1,2, ... n). 



14 

The vanishing of the determinants 

0 ... 0 Gl1U1'd G12U2 'd ... GlnIJIl'd I 
1 ... ... 0 G U 'd G IJ 'd 

21 1 22 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ... 0 0 ... 1 G U 'd GN2U2'd GNnun ' N1 1 
$pHl1U1d 2pH12U2d ... $ p H l N ~  - 1 0 0 

u*pH21Uld a2pH22U2d ... U+H.2Nyyd 0 - 1  ... 0 

u2pGlU1d ~ 2 p b U 2 d  ... u2Gi"I iN 0 0 ... - 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(4.3) 

postulated for the existance of a nontrivial solution system leaves an 
algebraic equation for p at given U, 0, and T and, especially, the 

critical value of the dimensionless - u~6& V for 7 = u. 

Every point T) (k) within the boundary layer contributes two non- 
trivial series to the determinant-that is, two series (or gaps) in which 
not only the terms af the principal diagonal are different from zero; a 
point at the border or outside of the boundary layer supplies only a non- 
trivial series; the wall point (say, chosen as 
trivial series because there the Green functions (and U also) disappear 

~(1)) produces only 

5 .  CALCULATION OF CRITICAL REYNOLDS "MBE3 VARIA!PION 

IN ITS MINIMUM WAVE LENGTH RANGE 

A few words concerning the choice of basic flow for the proposed 
numerical calculations are indicated. Theoretically, the basic flow U 
represents any boundary-layer flow formed at a wall due to friction and 
some earlier history. 
the Blasius boundary layer of the flat plate (ref. 8). 
profile forms are included for comparison. 

The present calculations are based on the data of 
Several other 

As regards the profile U of the plate boundary layer, the wall 
distance at which the boundary layer in its asymptotic transition to the 
outside flow diverges only 1 percent from this flow (curve 1, fig. 5) 
serves as measure 6 for the boundary-layer thickness. This is the wall 

Z J s  in Blasius's report assumes the 
2 vx 

distance at which the variable 
value 3 .  
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As a practical check on the quality of convergence of the calcula- 
4 tion method developed in section 4, ~ ( ~ 1  = v0(k) = - k - l  and d = -  1 

n n 
were selected and the following three approximations calculated: for 
q(k) 

314, 1 were taken. 
the preceding section 4, the calculation of three-, five-, or seven-row 
determinants is involved, which result in i linear or quadratic or cubic 
equation for p with respect to 0 and T .  Evaluation for neutral 
disturbances (t = a) showed that, to each value of the parameter u = a6, 
that is, to each wave length of disturbance there corresponds the related 
value of CI as smallest root. Since the equations exhibit, on the whole, 
coefficients with alternating prefix, only positive roots p are obtained 
by this calculation, that is, positive values of the critical dimension- 

less (-$) g ,  hence an instability of the assumed type only on concave 
wails (R > 0) result. 

and v0(k), the points 0, 1/2, 1; 0, 1/3, 2 /3 ,  1; 0, 1/4, 1/2, 

According to the remarks made at the conclusion of 

U 6 2 g  

The results of this preliminary calculation are shown in figure 4. 
The convergence for the parts of the curve above greater or smaller aS 
values, where the curves continue to rise, was not quite satisfactory. 
But the range of the minimum, which is of chief interest here, emerges 
sufficiently accurate. 

r- 

Beyond these approximations, other points 7 (k) outside the boundary 
layer were assumed for individual ai5 values as a check that the 
approximations achieved in figure 4 are not subjected to appreciable 
changes. The minimum becomes a few percent less and shifts slightly 
toward smaller a6 values. 

Incidentally, it should be noted that the order of magnitude of 

in power 
these numerical values had been checked by special calculations. 
nally it had been attempted to solve (2.7) by expanding 
series. The convergence for u and v from 7 = 0 on was very slow. 
Therefore, series from 7 = 1 on were resorted to. Corresponding to 
the order of the differential-equation system and the number of boundary 
conditions, three coefficients each had to be determined. In consequence, 
u and v had to be joined continuously with continuous first and second 
derivatives within the boundary layer. 
equations for the six still indeterminate coefficients and the stipulated 
disappearance of the six-row determinant of this equation system produced 
the conditional equation between p, u, and T .  But these calculations 
failed at the evaluation of the determinants. The values of u and v to 

with an accuracy of 1 percent at 
able large figures appearing in the.solution of the determinants, the 

Origi- 
7 

This gave six linear homogeneous 

z be gained from the series and their derivatives could still be determined 
7 = 0.5, but on account of the unavoid- 

J 
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r e s u l t s  could no longer be regarded as  r e l i a b l e .  On the other hand, 

near the minimum on the  curve of ?& against  aS, they yielded 

r e s u l t s  which i n  order of magnitude agreed with the previous ca lcu la t ions .  
Because of the surpr is ingly small values of the c r i t i c a l  Reynolds number, 
the  new calculat ions explained above were car r ied  o u t .  

The next s t e p  w a s  t o  f i n d  the  extent  of t h e  change i n  the  r e s u l t s  
by a d i f fe ren t  choice of basic  flow 
with the  ?(k) 

U ( 7 ) .  To t h i s  end the calculat ions 
places 0, 1/4, 1/2, 3/4, 1 were repeated f o r  the  boundary- 

layer  prof i les  

U(? )  = 

4 \ 

fl, t h a t  i s ,  E 1 = 1.732, = - 0.3890. The 

- (5.1) 

-. 
f i r s t  pro- 

f i l e  (E = 1) has negative curvature throughout, the  second, ( E  = E ~ )  has 
s 

an inversion poin t .  (See f i g .  5 ,  curves ( 2 )  and (3).) 

To assure a physically l o g i c a l  comparison of the  r e s u l t s  f o r  the  
several  boundary-layer p r o f i l e s ,  it w a s  postulated t h a t  a l l  p r o f i l e s  have 
the  same momentum thickness 

( 5 . 2 )  

which is a measure for  the  lo s s  of momentum i n  the  boundary layer .  
condition is m e t  when between the individual  boundary-layer thicknesses 
t h e  re la t ion  9 = 0.1116 = o.132sl = 0.13762 e x i s t s .  Here 6 denotes 
t h e  previously defined thickness of the  Blasius p l a t e  boundary layer ,  
61 and 62 the  boundary-layer thickness (7 = 1) f o r  the  s ine  p r o f i l e s  
(5.1) with €1 and €2.  

This 

The r e s u l t  of t h e  comparison i s  shown i n  f igure  6. It w a s  found 
4 

t h a t ,  when - '"fi i s  p lo t ted  against  a d ,  the  individual  curves within 
V 
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the scope of our approximation do not differ appreciably from one another. 
(A corresponding comparison based on the displacement thickness 
instead of 8 

6" 
4 produces curves which differ from one another considerably.) 

A final calculation, as the roughest approximation to an actual 
boundary-layer profile, was made on the section profile 

(compare curve 4, fig. 5). If 6 is the boundary-layer thickness of 

this profile (y = 6 

thickness with that of the profiles used so far, the difference is 
slightly greater, but, considering the rough approximation ( 5 . 3 ) ,  the 
departure from the result,s so far is n o t  very great. 
fig. 6.) 

3 
at 7 = l), then 13 = 2 € j3 .  At identical momentum 3 

(Compare c w v e  4, 

v The amplifications in the explored wave-length range, at least in 
vicinity of the critical Reynolds numbers, can be determined by'the same 
approximate method. 

function 

To each aS and $, that is, to each pair of parameters '5, T ,  there 

corresponds a particular value of the dimensionless - '0' E. m e  curves 

ss2 = Constant are obtained by graphical interpolation after conversion 

of 6 to 9. (Compare fig. 8.) For greater parameter values - p82, the 

quality of the approximate calculation decreases quickly. 

These calculations were made on the Blasius plate 
e boundary-layer profile. Instead of the extreme case (3.la) of Green's 

H(7 ;  T~), the more general expression is obtained from (3.1). 

V 

V 

V 

6 .  ASYMPTOTIC STATEMENTS 

Supplemental to these results for great and small values of 
a few statements are indicated. 
order for u alone can be obtained from (2 .7 )  by elimination of v. Its 
form is disagreeable for the general calculation, but it enables a pre- 
diction to be made for the extreme cases of great and small values of 
and T .  In this differential equation the coefficients relative to u 

b and -I- represent polynomials up to the sixth degree. Considering only 
the two highest powers on the assumption of sufficiently great values of 
cr and T inside the boundary layer, the problem reduces to the second 

a6, 
A differential equation of the sixth 

u 

J 
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order differential equation 

T2(2U2 + T2)uf2U" - 2T2(CT2 -k T2)U'u''U' + 

{ - T 2 ( O 2  + T2) (2U'l2 - u'u' ' ' ) - U2T4u'g U = - !-lUu13U (6.1) 

Integration of this equation across the boundary layer gives the 
relation 

The integrals still contain the unknown function 
second derivative, but the derivatives multiplied by polynomials of lower 
degree in u, T, so that the essential contributions to the integral are 

u and its first and 

already included in the estimation I 

(6.2a) 

Equation (6.2~~) is evaluated by an approximation expression for u by 
means of a polynomial of the fourth degree in 
tion the boundary conditions u(0) = 0, u"(0) = 0 (hence v(0) = 0), 
ul''(0) - T2u'(0> = o (hence w(0) = 0) and u'(1) +- Tu(1) = o (constant 
connection with constant tangent to the solution for u outside the bound- 
ary layer, which according to (2.7) is given by u = Constant e-T'I on 
account of Ut(?) = 0 for q 2 1 and hence u'' - 7% = 0). As a result 
u is closely approximated in wall proximity and the postulated decay 
toward the outside is attained. Minor errors in u near the outer edge 
of the boundary layer are of no consequence in view of the rapidly 
decreasing U'; errors of u in the numerator and denominator act in the 
same direction (positive integrands throughout), thus affecting the result 
very little. Again the asymptotic relation (6.2~~) manifests the existence 
of instability at concave walls only (R > 0). 

q,  taking into considera- 

4 

The defined polynomial for u reads rigorously 

u = constant T + 4)q + T ~ ( T  + 1 + T + - + T2 

T3) 
$ ( 6 . 3 )  7 4 2 



t 
but in practice only the highest powers of T are effective for great 
T .  Figure 7 represents this approximate function u for several values 
of 7 .  

The evaluation of the above appraisal for very great u and T 

gives for the Blasius plate profile the asymptotic formula 

corrected for 19. 

The same calculation for the section profile (5.3) gives the factor 

values is readily accomplished with the 
2.1 instead of 2.3, hence, a slight difference only. The tie-in with the 
results obtained for average 
asymptotic formula (6.4). Figure 8 represents the variation of the crit- 
'ical factor v& plotted against a4 in the double logarit-ic net 

II 

V 

p$ 
v (curve - 0). The first amplification curves p-92 = c = Constant > 0 

V V 

are also shown. The variation of these curves at high ad values is 

obtained by addition of 2.3~ to the critical values of 
a9, as is readily apparent from (6.4). 

-fi u019 at equal 
V 

Moreover, by (6.4) 

at great 
amplification quantity a solely dependent on a. 

ad, which constitutes an upper limit for the dimensionless 

uO R 

An asymptotic prediction for small u is obtained also by an appro- 

priate analysis. It is found that the critical factor & 2 increases 
proportional to (aij)-l  
(For a more accurate prediction, data about the sixth derivative of 
and v are necessary.) 

V $6 
with decreasing m, as expressed in figure 8. 

u 

7. DISCUSSION OF THE RESULTS 

On the basis of the data collected in the foregoing, the questions 
formulated above can now be answered in some detail. As regards the i 
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s t a b i l i t y  l i m i t ,  t h a t  i s ,  t h e  Reynolds number a t  which vor t ices  of the  
par t icu lar  type can e x i s t  f o r  the  f i r s t  time without decaying again, is & 

(7.1) 

It involves vor t ices  a t  which a19 = 0.14, t h a t  i s ,  whose wave length 
h i s  given by 

A = 45.9(= 5.06) (7.2) 

For the Taylor vor t ices  between s ta t ionary  outs ide and r o t a t i n g  
inside cylinder ( r e f .  3 ) ,  the  vortex appearing a t  t h e  s t a b i l i t y  l i m i t  has 
a wave length of about double the  dis tance of the  two cylinders,  the vor- 
t i c e s  thus f i l l i n g  quadratic c e l l s  ( f i g .  1). 
f i l l  c e l l s  with a width of about 2-1/2 times the  boundary-layer thickness; 

Taylor vor t ices  i s  given by - 'Os - - 41.36 where d i s  the  cylinder 

I n  the  present case they 

they even extend beyond t h e  boundary layer .  The s t a b i l i t y  l i m i t  f o r  t h e  

spacing and Uo the  ve loc i ty  of the  r o t a t i n g  inside cylinder while t h e  4 

v 

V 

- 
outside cylinder i s  a t  r e s t .  A t  .9 = - 1 d, = 2.81E 

6 V 

The appearance of t h e  f i r s t  vor t ices  i n  the  boundary layer  does i n  
no way indicate  inc ip ien t  turbulence of t h e  flow. On the  contrary,  it 
should be emphasized t h a t  t h e  flow w i l l  be-regular  i n  every way, j u s t  t h e  
same as before. 
nary p la te  turbulence already occurs a t  very grea t  

turbulence can be produced u n t i l  the  Reynolds numbers become considerably 
higher so t h a t  t h e  disturbances of an e n t i r e  range of wave lengths expe- 
r ience s u f f i c i e n t  amplif icat ion.  The same holds t r u e  f o r  the  Taylor vor- 
t i c e s  between fixed outs ide and r o t a t i n g  inside cylinder;  the  vor t ices  
f i r s t  appear as predicted,  but the  flow does not  become turbulent  un t i l  
the  ve loc i t ies  a r e  higher. 

(Naturally, it does not include the  case i n  which ord i -  
5 ) No inc ip ien t  
6 '  

The theory developed i n  the  present repor t  pos tu la tes  t h a t  the  v a r i -  
a t ion  of the  flow i n  pr inc ipa l  flow d i rec t ion  i s  small enough t o  be d i s r e -  
garded. When the  v a r i a t i o n  i n  x-direction i s  small, the  r e s u l t s  obtained 
r e t a i n  t h e i r  v a l i d i t y  as good approximations. I n  consequence it i s  j u s t i -  
f ied ,  under t h i s  hypothesis, t o  inquire  i n t o  t h e  f a t e  of a vortex Of given 

thickening up a t  constant outs ide veloci ty .  The momentary shape of the  
boundary layer  has no appreciable e f f e c t  on t h e  r e s u l t s ,  as already seen, 
when it i s  re fer red  t o  t h e  momentum thickness as c h a r a c t e r i s t i c  length.  

wave length i n  i t s  wandering i n  flow d i r e c t i o n  through a boundary-layer 
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In the (?@, aa) diagram the vortices of constant wave length 

A describe, by virtue of the identity (L 

curves of the configuration 

(7.4) 

with (21r)3/2 C = y 

curves of constant amplification and are repmduced for some values of 
the parameter 

cross the zone of unstable disturbances - when they enter it they always 
cross it since the curves of constant 'amplification, and especially the 

curve 8.92 = o at great a values, vary proportional to (a f i )2  (see 
equation (6.4)) - and there are curves in -the series that never reach the 
instability range. Thus, the vortices corresponding to the latter are 
never amplified but always swallowed by the viscosity effect. 
extreme case there is a curve which is tangent to the neutral curve 
.k& = 0. 

shown in figure 8. Therefore, if the disturbance of the wave length 
in wandering through the thickening boundary layer ever is to reach an 

undamped state, must be 2 50; that is, the inequality 

= Constant. These curves cross t'ne system of 

' O h  in figure 8. There 3re curves in this series which T \ j  E 

V 

In the 

U A  +\L = 'jO This is the case for the curve with t,he parameter 
*i V 

V 

must be fulfilled, which affords a measure for the smallest vortices which 
are able to experience amplification at all. At the instant where it 
reaches its solitary neutral state, the particular boundary disturbance 
has a specific wave length referred to the momentum thickness prevailing 
at that point. According to figure 8, the contact of the aforementioned 
curves occurs at about ad = 1.1, where, therefore, 
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Therefore, the wave length h of the disturbance must have a certain 
magnitude characterized by (7.5) if it ever is to get in a critical situ- 
ation with the increasing boundary-layer thickness. 
in (7.5), this instant is given by the fulfillment of (7.6); damping 
occurs before and after. 
ratio of wave length to boundary-layer thickness is already reached at a 

A certain stage, where as yet - > 0.63, after which the disturbance is 6 
amplified until a certain second ratio 

on the disturbance is damped again. 
second critical ratio is applicable only when the disturbance on the pre- 
viously transversed path of amplification does not exceed the theoreti- 
cally specified range of "small" disturbances. 

If equality exists 

If inequality exists in (7.5), then the critical 

A - <  0.63 6 is reached; from then 

However, the prediction about the 

The last question to be answered concerns the most dangerous disturb- 
ances, that is, disturbances in the whole range of wave lengths which in 
traveling through the boundary layer at equal Reynolds number expe- 

rience the highest amplification, or in figure 8, the curves 
V 

= Constant, which prevail at the start of their amplification path t 
V 

before transition to turbulent flow in the range of minimums of the curves 

p.9" = Constant. 
V 

a 

In an article by M. and F. Clauser (ref. 9) ,  the appearance of tur- 
bulent flow at the concave wall was observed for Rex = - u ~ x  = 2.6 x 105 

V 

X at point = 0.75 and for Rex = 3.1 x lo5 at point - = 0.45. Using 

the Blasius law of growth of the boundary layer at the flat plate 

(9 = :E) as basis, the values of the critical dimensionless factor 
R R 

are 10.6 and 8.6. They are indicated by the dashed markings in 
figure 8. 
values, the amplification curves 

A rough extrapolation indicates that, in the vicinity of these 

= Constant (or the curves 
- V 

2 vx hi = Constant = 9 892 which, based upon the law 21 = -{- 
uO 4 v  3 uo' 
are minimum at about a = 0.6, hence a6 = 5.5. Assuming that the turbu- 
lence is caused by vortices of the type investigated here, at reversal the 
boundary-layer thickness would, roughly speaking, have increased up to the 
order of magnitude of the width of the highest amplified vortices. 

latter, in turn, would have a wave length A of about A = 5 0 R p ) - 2 ' 3 *  
The 

V 
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For a more accurate prediction about the most dangerous vortices, the par- 
ticular total amplification throughout the unstable range would have to 
be determined for different vortices by integration; but 
for this, the few amplification curves, which at greater values of @ 
becme zmeliable, is insufficient . 

CL = Constant 

V 

Translated by J. Vanier 
National Advisory Committee 
for Aeronautics 
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Inside cylinder Outi ide cylinder 

Figure 1.- Vortex bstween the walls of two concentric rotating 
cylinders according to G. I. Taylor, streamline pattern following 
incipient instability (inside and outside cylinder rotate in same 
direction). 
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Figure 2.- Vortex disturbances in 
axes of vortices parallel to 

the flow of a fluid on a concave wall, 
principal flow direction. 
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Figure 3.- Scheme of streamline pattern in a section at right angle to 
the principal flow direction. 
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Figure 4.- The critical factor 7 uo6 for Blasius’s flat plate bound- 

ary layer plotted against a6 computed by three increasing 
approximations. 
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8 

Figure 5.- The boundary-layer profiles of equal momentum thick- 
ness 9 used as basis of the calculation 
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Figure 6.- The. critical factor plotted against f o r  the 

boundary-layer profiles of figure 5. 
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Figure 7. - Approximate function for u (according to equation (6.3)). 
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